# Hydrotris[3-(carboxypyrrolidido)pyrazol-1-yl]borate, the first proven $\mathrm{N}_{3} \mathrm{O}_{3}$-hexadentate homoscorpionate ligand 

Arnold L. Rheingold, Christopher D. Incarvito and Swiatoslaw Trofimenko*

Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
Received 29th February 2000, Accepted 2nd March 2000 Published on the Web 30th March 2000

The new homoscorpionate ligand, hydrotris[3-(carboxy-pyrrolidido)pyrazol-1-yl]borate, [ $\left.\mathrm{Tp}^{\mathrm{cpd}}\right]^{-}$, was synthesized, and it formed with lanthanide(iII) ions $\mathrm{La}, \mathrm{Nd}$ and Sm , structurally characterized $\left[\mathrm{M}\left(\mathrm{Tp}^{\mathrm{cpd}}\right)_{2}\right] \mathrm{PF}_{6}$ complexes, where the lanthanide ion was in a ten-coordinate enviroment consisting of one $\mathrm{N}_{3} \mathrm{O}_{3}$ hexadentate $\mathrm{Tp}^{\mathrm{cpd}}$ ligand, and one $\mathrm{N}_{2} \mathrm{O}_{2}$ tetradentate $\mathrm{Tp}{ }^{\mathrm{cpd}}$ ligand.

Although over 170 different scorpionate ligands are known, ${ }^{1}$ their maximum denticity is usually equal to the number of pyrazolyl rings bonded to boron, except for the instance of oxidative addition of the ortho- CH of a 3 -phenyl substituent from $\mathrm{Tp}^{\mathrm{Ph}}$ to $\mathrm{Rh}(\mathrm{I}) .{ }^{2}$ The only example where higher denticity, including $\kappa^{6}$, has been realized in a $\mathrm{Tp}^{\mathrm{x}}$ ligand, was with $\mathrm{Tp}^{\mathrm{Py}}$, where the 3 -(2-pyridyl) substituent on each pyrazolyl ring was also capable of coordination. ${ }^{3-5}$ No other examples of $\mathrm{Tp}^{\mathrm{x}}$ hexadenticity are known, although ligands such as $\mathrm{Tp}^{o-\mathrm{An}}$ ( $o$ $\mathrm{An}=$ anisole, ortho-methoxyphenyl), ${ }^{6}$ and $\mathrm{Tp}^{2,4(\mathrm{OMe})_{2} \mathrm{Ph}}{ }^{7}{ }^{7}$ might be capable of exhibiting additional coordination, up to $\kappa^{6}$, through the ortho-methoxy groups. However, the structurally characterized Tl complexes of $\mathrm{Tp}^{0-\mathrm{An}, 8}$ and of $\mathrm{Tp}^{2,4\left(\mathrm{OMe}_{2} \mathrm{Ph}\right.}$ showed the ortho-methoxy groups not only uncoordinated, but actually turned away from the metal ion.

Our approach to $\mathrm{N}_{3} \mathrm{O}_{3}$ hexadentate $\mathrm{Tp}^{\mathrm{x}}$ ligands consisted of choosing $3-\mathrm{C}(\mathrm{O}) \mathrm{NR}_{2}$ as the pyrazolyl 3-substituent, which would coordinate through the oxygen, bearing a partial negative charge via the contributing form $\mathrm{R}_{2} \mathrm{~N}^{+}=\mathrm{C}-\mathrm{O}^{-}$. As we did not want the 3 -substituent to be overly bulky, we selected as $\mathrm{NR}_{2}$ the pyrrolidido group, $\mathrm{N}\left(\mathrm{C}_{4} \mathrm{H}_{8}\right)$, in which the N -substituents were tied back into a relatively inflexible five-membered ring, leading to the ligand $\mathrm{Tp}{ }^{\mathrm{cpd}}$ ("cpd" standing for carboxypyrrolidido). The five-membered $\mathrm{N}, \mathrm{O}$-chelate ring formed by this substituent per $\mathrm{pz}^{\mathrm{cpd}}$ unit ( $\mathrm{pz}=$ pyrazolyl) would be more compact than the twisted six-membered one, which might form in the case of an ortho-methoxyphenyl 3-substituent (Fig. 1).
3-(Carboxypyrrolidido)pyrazole, $\mathrm{Hpz}^{\mathrm{cpd}}$, was synthesized by the reaction of diketopiperazine (the tricyclic anhydride of pyrazole-3-carboxylic acid), ${ }^{9,10}$ with excess pyrrolidine, as shown in Scheme $1 . \dagger$ Upon reaction with $\mathrm{KBH}_{4}$ in refluxing


Scheme 1
4-methylanisole it was converted to hydrotris[3-(carboxy-pyrrolidido)-pyrazol-1-yl]borate, $\mathrm{Tp}^{\mathrm{cpd}}$, which was purified and characterized as the Tl salt, $\mathrm{TITp}{ }^{\mathrm{cpd}}$. An X-ray crystallographic structure determination (Fig. 2) showed Tl to be symmetrically coordinated to the three N atoms. $\ddagger$ In addition, all three carbonyl oxygens were pointed at the Tl ion, although being out of the bonding range. The $\mathrm{N}-\mathrm{Tl}$ bond lengths averaged $2.709 \AA$, which was slightly longer than the pyrazolyl $\mathrm{N}-\mathrm{Tl}$ distances in


Fig. $1 \mathrm{Tp}^{\mathrm{cpd}} \mathrm{M}$ where $-\mathrm{N}=\mathrm{N}-$ and ---O represents the third, hidden, $\mathrm{pz}^{\mathrm{cpd}}$ ring.


Fig. 2 Structure of the complex $\mathrm{Tl}\left(\mathrm{Tp}^{\mathrm{cpd}}\right)$. Selected bond lengths $(\AA)$ and angles $\left({ }^{\circ}\right)$ : $\mathrm{Tl}-\mathrm{N}(11)$ 2.713(7), $\mathrm{Tl}-\mathrm{N}(21)$ 2.710(7), $\mathrm{Tl}-\mathrm{N}(31)$ 2.704(7); $\mathrm{N}(11)-\mathrm{Tl}-\mathrm{N}(31)$ 67.2(2), $\mathrm{N}(11)-\mathrm{Tl}-\mathrm{N}(21)$ 69.4(2), $\mathrm{N}(21)-\mathrm{Tl}-$ $\mathrm{N}(31)$ 72.4(2).
$\mathrm{Tl}\left[\mathrm{Tp}^{\mathrm{Py}}\right](2.670 \AA)$, while the $\mathrm{Tl}-\mathrm{O}$ distances averaged $3.004 \AA$, thus being moderately shorter than the pyridyl $\mathrm{N}-\mathrm{Tl}$ distances in $\operatorname{Tl}\left[\mathrm{Tp}^{\mathrm{Py}}\right](3.176 \AA) .{ }^{9}$

The reaction of $\mathrm{Tp}^{\mathrm{cpd}}$ with trivalent lanthanide ions (La, Nd, $\mathrm{Sm})$ in $2: 1 \mathrm{~mol}$ ratio yielded cationic species $\left[\mathrm{M}\left(\mathrm{Tp}{ }^{\mathrm{cpd}}\right)_{2}\right]^{+}$, $\dagger$ which were isolated as their $\mathrm{PF}_{6}$ salts, and structures of all three were determined by X-ray crystallography. $\ddagger$ They were essentially identical, and of the type shown in Fig. 3 for the Sm(III) complex, except that their average $\mathrm{M}-\mathrm{N}$ and $\mathrm{M}-\mathrm{O}$ bond lengths decreased in the $\mathrm{La}-\mathrm{Nd}-\mathrm{Sm}$ series, in line with the "lanthanide contraction" of their ionic radii. Thus, the average M-N bond lengths were $2.720,2.663$, and 2.635 A , respectively, while the corresponding M-O bonds were $2.594,2.538$ and $2.510 \AA$.

In each case the lanthanide ion was in a ten-coordinate environment, being bonded to the three N and three O atoms of one $\kappa^{6} \mathrm{Tp}^{\mathrm{cpd}}$ ligand, and to two N and two O atoms of the second $\mathrm{Tp}^{\text {cpd }}$ ligand, bonded only in $\kappa^{4}$ fashion, and containing the uncoordinated $\mathrm{pz}^{\mathrm{cpd}}$ arm positioned roughly at right angles to the $\mathrm{B}-\mathrm{M}$ axis. Counting the $\mathrm{N}, \mathrm{O}$-donor set from each $\mathrm{pz}^{\mathrm{cpd}}$ arm as a unit, one could describe the coordination of La as "octahedral" with one vacant site. Looking down the B-M bond, viewed as having a square of oxygens in the equatorial belt, and three capping nitrogens at one apex, and two nitrogens


Fig. 3 Structure of the complex cation $\left[\operatorname{Sm}\left(\mathrm{Tp}^{\mathrm{cpd}}\right)_{2}\right]^{+}$. Selected bond lengths $(\AA)$ and angles $\left({ }^{\circ}\right): S m-N(1) 2.596(7), \mathrm{Sm}-\mathrm{N}(11) 2.673(8)$, $\mathrm{Sm}-\mathrm{N}(21) 2.533(8), \mathrm{Sm}-\mathrm{N}(31) 2.651(7), \mathrm{Sm}-\mathrm{N}(41)$ 2.701(7), $\mathrm{Sm}-\mathrm{O}$ (1) 2.484(7), $\mathrm{Sm}-\mathrm{O}(2)$ 2.579(7), $\mathrm{Sm}-\mathrm{O}(3) 2.481(7), \mathrm{Sm}-\mathrm{O}(4) 2.482(6)$ $\mathrm{Sm}-\mathrm{O}(5) 2.523(6) ; \mathrm{N}(1)-\mathrm{Sm}-\mathrm{N}(11)$ 60.9(2), $\mathrm{N}(11)-\mathrm{Sm}-\mathrm{N}(21) 68.9$ (2), $\mathrm{N}(21)-\mathrm{Sm}-\mathrm{N}(31)$ 128.5(2), $\mathrm{N}(31)-\mathrm{Sm}-\mathrm{N}(41) 67.1(2), \mathrm{O}(1)-\mathrm{Sm}-\mathrm{O}(2)$ 77.9(2), $\mathrm{O}(2)-\mathrm{Sm}-\mathrm{O}(3) 135.4(2), \mathrm{O}(3)-\mathrm{Sm}-\mathrm{O}(4) 70.9(2), \mathrm{O}(4)-\mathrm{Sm}-\mathrm{O}(5)$ 136.3(2).
and one oxygen at the other. All the $\mathrm{La}-\mathrm{N}$ bond distances were almost identical, those of the $\kappa^{6}$ ligand averaging $2.694 \AA$. The shortest bond $(2.644 \AA)$ was trans to the vacant site. The La-O distances were also almost identical, and averaged $2.694 \AA$ in the $\kappa^{3}$ ligand, and $2.760 \AA$ in the $\kappa^{2}$ ligand.

In the related icosahedral cation $\left[\mathrm{Sm}\left(\mathrm{Tp}^{\mathrm{Py}}\right)_{2}\right]^{+}$, the pyrazole $\mathrm{N}-\mathrm{M}$ bond lengths averaged 2.658 Á, while the pyridyl N-M bonds were $2.950 \AA \AA^{11}$ These values should be compared with those of $\left[\mathrm{Sm}\left(\mathrm{Tp}^{\mathrm{cpd}}\right)_{2}\right]^{+}$, which were $2.635 \AA$ for $\mathrm{Sm}-\mathrm{N}$, and $2.510 \AA$ for $\mathrm{Sm}-\mathrm{O}$ bonds. The fact that the latter distance is shorter by $0.44 \AA$ as compared with the corresponding Sm-N distance to the pyridyl nitrogen in $\left[\operatorname{Sm}\left(\mathrm{Tp}^{\mathrm{Py}}\right)_{2}\right]^{+}$, points to much tighter $\kappa^{6}$ chelation by the $\mathrm{Tp}^{\mathrm{cpd}}$ ligand, as compared with $\mathrm{Tp}^{\mathrm{Py}}$. It is possible that this compactness precluded the accommodation of $\kappa^{6}$ chelation by the second $\mathrm{Tp}^{\mathrm{cpd}}$ ligand in the $\left[\mathrm{La}\left(\mathrm{Tp}^{\mathrm{cpd}}\right)_{2}\right]^{+}$complexes, at least in the crystal. At the same time, the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of the diamagnetic [La$\left.\left(\mathrm{T}^{\mathrm{cpd}}\right)\right]^{+}$complex cation showed only one type of $\mathrm{pz}{ }^{\mathrm{cpd}}$ present, implying a rapid exchange of the coordinated and uncoordinated $\mathrm{pz}^{\mathrm{cpd}}$ arms on the NMR time scale, as the presence of a rigid 12 -coordinate structure, with two $\kappa^{6} \mathrm{Tp}^{\mathrm{cpd}}$ ligands, was thought to be less likely. No attempts were made to freeze out the static structure.

In summary, we have synthesized the first proven $\mathrm{N}_{3} \mathrm{O}_{3}$ hexadentate homoscorpionate ligand, $\mathrm{Tp}^{\mathrm{cpd}}$, modifications of which can be readily visualized, and have demonstrated that it is capable of coordinating in both, $\kappa^{4} \mathrm{~N}_{2} \mathrm{O}_{2}$ and $\kappa^{6} \mathrm{~N}_{3} \mathrm{O}_{3}$ fashion.

## Notes and references

$\dagger$ Syntheses: 3-(carboxypyrrolidido)pyrazole ( $\mathrm{Hpz}^{\mathrm{cpd}}$ ). This pyrazole was synthesized by refluxing diketopiperazine ${ }^{9,10}$ in THF with a large excess of pyrrolidine. After stripping the low-boilers, the product was distilled in vacuo, bp $215-220^{\circ} \mathrm{C}$ at 3 Torr ( $58 \%$ yield). Mp $145-147^{\circ} \mathrm{C}$ (from toluene-heptane). IR: CO $1589 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (ppm): 7.61 (d, $J=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 6.69(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 3.84\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $3.70\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.95\left(4 \mathrm{H}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR (ppm): 23.9 and 26.5 $\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 47.0$ and $48.5\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 107.0(\mathrm{C}-4), 134.1(\mathrm{C}-5), 142.5$ (C-3), 161.0 (CO). These, and all the other NMR spectra were deter-
mined in chloroform- $d$. Anal. Calc. for $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}$ : C, 63.6; H, 7.28; N, 18.5; Found: C, 63.3; H, 7.49; N, 18.2\%.
$\mathrm{Tl}\left[\mathrm{Tp}^{\mathrm{cpd}}\right]$. A mixture of $\mathrm{Hpz}^{\mathrm{cpd}}$ and $\mathrm{KBH}_{4}(3.5: 1 \mathrm{~mol}$ ratio) was refluxed in 4-methylanisole until the theoretical amount of hydrogen was evolved. After distilling the solvent in vacuo, the residue was dissolved in THF-DMF $(10: 1)$ and treated with excess aqueous $\mathrm{TlNO}_{3}$. After dilution with much water, the product was extracted with methylene chloride, the extracts were filtered through alumina, stripped, and the residue yielded $69 \%$ of the product, $\mathrm{mp} 263-265^{\circ} \mathrm{C}$, upon trituration with ethyl acetate; IR: BH 2500, CO $1606 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR (ppm): 7.62 (d, $J=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 6.36$ (d, $J=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ ), 3.56 (m, 4H, $\left.\mathrm{CH}_{2}\right), 1.85\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR (ppm): 23.5 and $26.2\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right)$, 46.4 and $47.8\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 105.2(\mathrm{C}-4), 135.3(\mathrm{C}-5), 147.1(\mathrm{C}-3), 162.9$ (CO). Anal. Calc. for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{BN}_{9} \mathrm{O}_{3} \mathrm{Tl}$ : C, 43.2; H, 4.65; N, 12.6; Found: C, 43.1; H, 4.78; N, 12.4\%.
$\left[\mathrm{La}\left(\mathrm{Tp}^{\mathrm{cpd}}\right)_{2}\right]\left[\mathrm{PF}_{6}\right]$. A mixture of $\mathrm{TlTp}{ }^{\mathrm{cpd}}$ and $\mathrm{La}\left(\mathrm{NO}_{3}\right)_{3}(2: 1$ mol ratio $)$ was stirred with excess $\mathrm{NH}_{4} \mathrm{PF}_{6}$ in DMF until a clear solution resulted, which was diluted with much water, and extracted with chloroform. The extracts were passed through a layer of alumina, and the residue from evaporation of the eluate was crystallized from nitromethane-EtOAc. Mp 296-298 ${ }^{\circ} \mathrm{C}$, decomp.; IR: BH 2474, CO $1592 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR (ppm): $7.83(1 \mathrm{H}, \mathrm{H}-5), 6.43(1 \mathrm{H}, \mathrm{H}-4), 3.61\left(2 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.92\left(2 \mathrm{H}, \mathrm{NCH}_{2}\right)$, $1.87\left(2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.63\left(2 \mathrm{H}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR (ppm): 23.4 and 26.4 $\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 47.0$ and $47.7\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 105.3(\mathrm{H}-4), 136.1(\mathrm{H}-5)$, $147.0(\mathrm{H}-3), 163.8(\mathrm{CO})$. Anal. Calc. for $\mathrm{C}_{48} \mathrm{H}_{62} \mathrm{~B}_{2} \mathrm{~F}_{6} \mathrm{LaN}_{12} \mathrm{O}_{6} \mathrm{P}: \mathrm{C}, 47.7$; H, 5.13; N, 13.9; Found: C, 48.0; H, 5.28; N, 13.7\%.
The isostructural $\left[\mathrm{Nd}\left(\mathrm{Tp}^{\mathrm{cpd}}\right)_{2}\right] \mathrm{PF}_{6}$ and $\left[\mathrm{Sm}\left(\mathrm{Tp}^{\mathrm{cpd}}\right)_{2}\right] \mathrm{PF}_{6}$ complexes were prepared similarly.
$\ddagger$ Crystal data. For $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{BN}_{9} \mathrm{O}_{3} \mathrm{Tl}$ : orthorhombic, Pbcn, $a=$ $34.899(4), \quad b=9.26(1), c=17.409(3) \AA, \quad V=5605(4) \AA^{3}, \quad Z=8, \quad T=$ $298(2) \mathrm{K}, D_{\text {calc }}=1.680 \mathrm{~g} \mathrm{~cm}^{-3}$, colorless rod, $\mathrm{GOF}=0.625, \mu(\mathrm{Mo}-$ $\mathrm{K} \alpha)=0.71073 \AA, \quad R(F)=4.03 \%$ for 6329 observed independent reflections ( $4^{\circ} \leq 2 \theta \leq 55^{\circ}$ ).
For $\quad \mathrm{C}_{48} \mathrm{H}_{62} \mathrm{~B}_{2} \mathrm{~F}_{6} \mathrm{LaN}_{18} \mathrm{O}_{6} \mathrm{P} \cdot 2 \mathrm{EtOAc}$ monoclinic, $C 2 / c$, $a=$ $25.7439(3), b=19.9574(2), \quad c=25.7150(3) \AA, \quad \beta=101.1056(5)^{\circ}, \quad V=$ 12964(3) $\AA^{3}, Z=8, T=173(2) \mathrm{K}, D_{\text {calc }}=1.470 \mathrm{~g} \mathrm{~cm}^{-3}$, colorless block, $\mathrm{GOF}=2.205, \quad \mu(\mathrm{Mo}-\mathrm{K} \alpha)=0.71073^{\text {calc }} \AA, \quad R(F)=7.81 \%$ for 10194 observed independent reflections $\left(4^{\circ} \leq 2 \theta \leq 50^{\circ}\right)$.
For $\mathrm{C}_{48} \mathrm{H}_{62} \mathrm{~B}_{2} \mathrm{~F}_{6} \mathrm{~N}_{18} \mathrm{NdO}_{6} \mathrm{P} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2} \cdot \mathrm{CHCl}_{3}$ : monoclinic, $C 2 / c$, $a=26.0247(4), \quad b=19.8463(3), \quad c=26.3284(4) \quad \AA, \quad \beta=103.9329(7)^{\circ}$, $V=13198(5) \AA^{3}, Z=8, T=173(2) \mathrm{K}, D_{\text {calc }}=1.512 \mathrm{~g} \mathrm{~cm}^{-3}$, purple block, $\mathrm{GOF}=2.040, \mu(\mathrm{Mo}-\mathrm{K} \alpha)=0.71073 \AA, R(F)=8.52 \%$ for 12673 observed independent reflections $\left(4^{\circ} \leq 2 \theta \leq 52^{\circ}\right)$.
For $\mathrm{C}_{48} \mathrm{H}_{62} \mathrm{~B}_{2} \mathrm{~F}_{6} \mathrm{~N}_{18} \mathrm{O}_{6} \mathrm{PSm} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O} \cdot 1 / 2 \mathrm{Me}_{2} \mathrm{CO}$ : monoclinic, $C 2 / c$, $a=25.7018(2), \quad b=19.6629(2), \quad c=25.5878(3) \quad \AA, \quad \beta=100.4362(8)^{\circ}$, $V=12717.4(2) \AA^{3}, Z=8, T=173(2) \mathrm{K}, D_{\text {calc }}=1.463 \mathrm{~g} \mathrm{~cm}^{-3}$, colorless plate, $\mathrm{GOF}=1.168, \mu(\mathrm{Mo}-\mathrm{K} \alpha)=0.71073 \mathrm{~A}, R(F)=8.16 \%$ for 10364 observed independent reflections $\left(4^{\circ} \leq 2 \theta \leq 50^{\circ}\right)$. CCDC reference number 186/1885. See http://www.rsc.org/suppdata/dt/b0/b001651i/ for crystallographic files in .cif format.

1 S. Trofimenko, Scorpionates: The Coordination Chemistry of Polypyrazolylborate Ligands, Imperial College Press, London, UK, 1999.

2 R. Krentz, PhD Dissertation, University of Alberta, Edmonton, 1989.

3 A. J. Amoroso, A. M. Cargill Thompson, J. C. Jeffery, P. L. Jones, J. A. McCleverty and M. D. Ward, J. Chem. Soc., Chem. Commun., 1994, 2751.
4 A. J. Amoroso, J. C. Jeffery, P. L. Jones, J. A. McCleverty, L. Rees, A. L. Rheingold, Y. Sun, J. Takats, S. Trofimenko, M. D. Ward and G. P. A. Yap, J. Chem. Soc., Chem. Commun., 1995, 1881.

5 A. J. Amoroso, J. C. Jeffery, P. L. Jones, J. A. McCleverty and M. D. Ward, Polyhedron, 1996, 15, 2023.

6 P. L. Jones, K. L. V. Mann, J. C. Jeffery, J. A. McCleverty and M. D. Ward, Polyhedron, 1997, 14, 2435.

7 A. L. Rheingold, B. S. Haggerty, L. M. Liable-Sands and S. Trofimenko, Inorg. Chem., 1999, 38, 6306.
8 A. J. Amoroso, J. C. Jeffery, P. L. Jones, J. A. McCleverty, E. Psillakis and M. D. Ward, J. Chem. Soc., Chem. Commun., 1995, 1175.

9 C. Musante and P. Pino, Gazz. Chim. Ital., 1947, 77, 199
10 H. Brunner and T. Scheck, Chem. Ber., 1992, 125, 701.
11 P. L. Jones, A. J. Amoroso, J. C. Jeffery, J. A. McCleverty, E. Psillakis, L. H. Rees and M. D. Ward, Inorg. Chem., 1997, 36, 10.

